Pages

Search This Blog

Showing posts with label cache. Show all posts
Showing posts with label cache. Show all posts

Monday, December 12, 2011

[Oracle] While creating a sequence, what does cache and nocache options mean?

One common question about sequences is:
Question: While creating a sequence, what does cache and nocache options mean? For example, you could create a sequence with a cache of 20 as follows:
CREATE SEQUENCE supplier_seq
MINVALUE 1
START WITH 1
INCREMENT BY 1
CACHE 20;
Or you could create the same sequence with the nocache option:
CREATE SEQUENCE supplier_seq
MINVALUE 1
START WITH 1
INCREMENT BY 1
NOCACHE;
Answer: With respect to a sequence, the cache option specifies how many sequence values will be stored in memory for faster access.
The downside of creating a sequence with a cache is that if a system failure occurs, all cached sequence values that have not be used, will be "lost". This results in a "gap" in the assigned sequence values. When the system comes back up, Oracle will cache new numbers from where it left off in the sequence, ignoring the so called "lost" sequence values.
Note: To recover the lost sequence values, you can always execute an ALTER SEQUENCE command to reset the counter to the correct value.
Nocache means that none of the sequence values are stored in memory. This option may sacrifice some performance, however, you should not encounter a gap in the assigned sequence values.

Tuesday, January 4, 2011

[T-SQL] Data Cache in Memory

Here is the query by which you can see data cache in memory:

USE AdventureWorks
GO
SELECT COUNT(*) AS cached_pages_count,
name AS BaseTableName, IndexName,
IndexTypeDesc
FROM sys.dm_os_buffer_descriptors AS bd
INNER JOIN
(
SELECT s_obj.name, s_obj.index_id,
s_obj.allocation_unit_id, s_obj.OBJECT_ID,
i.name IndexName, i.type_desc IndexTypeDesc
FROM
(
SELECT OBJECT_NAME(OBJECT_ID) AS name,
index_id ,allocation_unit_id, OBJECT_ID
FROM sys.allocation_units AS au
INNER JOIN sys.partitions AS p
ON au.container_id = p.hobt_id
AND (au.TYPE = 1 OR au.TYPE = 3)
UNION ALL
SELECT OBJECT_NAME(OBJECT_ID) AS name,
index_id, allocation_unit_id, OBJECT_ID
FROM sys.allocation_units AS au
INNER JOIN sys.partitions AS p
ON au.container_id = p.partition_id
AND au.TYPE = 2
) AS s_obj
LEFT JOIN sys.indexes i ON i.index_id = s_obj.index_id
AND i.OBJECT_ID = s_obj.OBJECT_ID ) AS obj
ON bd.allocation_unit_id = obj.allocation_unit_id
WHERE database_id = DB_ID()
GROUP BY name, index_id, IndexName, IndexTypeDesc
ORDER BY cached_pages_count DESC;
GO

[T-SQL] Plan Cache in Memory

Here is the query by which you can see plan cache in memory:

USE AdventureWorks
GO
SELECT [text], cp.size_in_bytes, plan_handle
FROM sys.dm_exec_cached_plans AS cp
CROSS APPLY sys.dm_exec_sql_text(plan_handle)
WHERE cp.cacheobjtype = N'Compiled Plan'
ORDER BY cp.size_in_bytes DESC
GO

Thursday, October 7, 2010

[T-SQL] Clear Cache and Buffer of Stored Procedure

Use DBCC FREEPROCCACHE to clear the procedure cache. Freeing the procedure cache would cause, for example, an ad-hoc SQL statement to be recompiled rather than reused from the cache. If observing through SQL Profiler, one can watch the Cache Remove events occur as DBCC FREEPROCCACHE goes to work. DBCC FREEPROCCACHE will invalidate all stored procedure plans that the optimizer has cached in memory and force SQL Server to compile new plans the next time those procedures are run.

Use DBCC DROPCLEANBUFFERS to test queries with a cold buffer cache without shutting down and restarting the server. DBCC DROPCLEANBUFFERS serves to empty the data cache. Any data loaded into the buffer cache due to the prior execution of a query is removed.

DBCC FREEPROCCACHE
DBCC DROPCLEANBUFFERS